Voltage-dependent Ca2+ channels, not ryanodine receptors, activate Ca2+-dependent BK potassium channels in human retinal pigment epithelial cells

نویسندگان

  • Sönke Wimmers
  • Claire Halsband
  • Sebastian Seyler
  • Vladimir Milenkovic
  • Olaf Strauß
چکیده

PURPOSE In different tissues the activation of large conductance Ca2+-activated (BK) potassium channels has been shown to be coupled to voltage-gated Ca2+ channels as well as ryanodine receptors. As activation of BK channels leads to hyperpolarization of the cell, these channels provide a negative feedback mechanism for Ca2+-induced functions. Many cellular functions of the retinal pigment epithelium (RPE) are coupled to changes in [Ca2+]i. The aim of this study was to identify which Ca2+-entry pathway leads to the activation of BK channels in the RPE. METHODS We used freshly isolated human RPE cells and the ARPE-19 cell line for the detection of transcripts of BK channel alpha subunits. Patch-Clamp measurements were used to characterize BK channels in ARPE-19 cells electrophysiologically. To monitor changes in [Ca2+]i ARPE-19 cells were loaded with Fura-2. RESULTS Freshly isolated human RPE cells and ARPE-19 cells were shown to express BK channels. In ARPE-19 cells these channels were shown to be functionally active. Application of iberiotoxin led to a block of outward currents by 28.15%. At +50 mV ARPE-19 cells had a BK channel-mediated current density of 2.42 pA/pF. Activation of ryanodine receptors by caffeine led to a significant increase in [Ca2+]i by 34.16%. Nevertheless, caffeine-induced Ca2+ signals were not sufficient to activate BK channels. Instead, the activation of L-type Ca2+ channels by BayK 8644 caused a dramatic increase in BK channel activity and a shift of the reversal potential of the ARPE-19 cells by -22.6 mV. CONCLUSIONS We have shown here for the first time that human RPE cells express BK channels. These channels are activated in RPE cells by increases in [Ca2+]i that are mediated by the opening of voltage gated L-type Ca2+ channels. As Ca2+ entering the RPE cells through these Ca2+ channels are known to be important for growth factor secretion and light-induced transepithelial transport, we speculate that BK channels coupled directly to these Ca2+ channels may provide a good tool for negative feedback control of the L-type Ca2+ channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve-evoked constriction of mesenteric resistance arteries.

In depolarized smooth muscle cells of pressurized cerebral arteries, ryanodine receptors (RyRs) generate "Ca2+ sparks" that activate large-conductance, Ca2+ -, and voltage-sensitive potassium (BK) channels to oppose pressure-induced (myogenic) constriction. Here, we show that BK channels and RyRs have opposing roles in the regulation of arterial tone in response to sympathetic nerve activation ...

متن کامل

Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage.

Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activ...

متن کامل

Met-enkephalin-induced mobilization of intracellular Ca2+ in rat intracardiac ganglion neurones.

The effects of Met-enkephalin on Ca2+-dependent K+ channel activity were investigated using the cell-attached patch recording technique on isolated parasympathetic neurones of rat intracardiac ganglia. Large-conductance, Ca2+-dependent K+ channels (BK(Ca)) were examined as an assay of agonist-induced changes in the intracellular free calcium ion concentration ([Ca2+]i). These BK(Ca) channels ha...

متن کامل

Highlights from the Literature

Question: Do Mg2+ and Ca2+ work through functionally similar mechanisms to activate BK channels? Background: BK channels are large conductance Ca2+ and voltage-activated K+ channels, which allow K+ to leave the cytoplasm and promote membrane hyperpolarization under physiological conditions when activated by membrane potential and/or intracellular Ca2+. In addition to these two primary signals, ...

متن کامل

Opposing roles of smooth muscle BK channels and ryanodine receptors

24 In depolarized smooth muscle cells of pressurized cerebral arteries, ryanodine 25 receptors (RyRs) generate “Ca sparks” that activate large conductance, Ca26 and voltage-sensitive potassium (BK) channels to oppose pressure-induced 27 (myogenic) constriction. Here, we show that BK channels and RyRs have 28 opposing roles in the regulation of arterial tone in response to sympathetic nerve 29 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular Vision

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2008